Synthesis of dicationic triple-decker complexes with a central *B*-cyclohexyl-substituted borole ligand

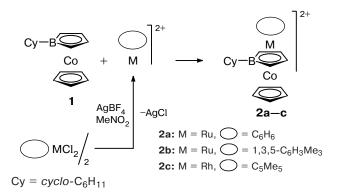
A. R. Kudinov, * D. A. Loginov, D. V. Muratov, and P. V. Petrovskii

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation.

Fax: +7 (095) 135 5085. E-mail: arkudinov@ineos.ac.ru

Stacking reactions of the dicationic fragments $[LM]^{2+}$ (LM = $(\eta - C_6H_6)Ru$, $(\eta - C_6H_3Me_3)Ru$, or $(\eta - C_5Me_5)Rh$) with the complex $(\eta - C_5H_5)Co(\eta - C_4H_4BCy)$ (Cy = $cyclo-C_6H_{11}$) afforded new dicationic 30-electron triple-decker complexes $[(\eta - C_5H_5)Co(\mu - \eta : \eta - C_4H_4BCy)ML](BF_4)_2$ containing a cyclohexyl-substituted borole ligand in the central position.

Key words: sandwich compounds, triple-decker complexes, borole, cobalt, ruthenium,


A rather wide range of neutral^{1–3} and anionic^{3,4} triple-decker complexes based on the borole ligand C_4H_4BR (R = Me or Ph) are known. However, only two cationic triple-decker complexes were described, viz., $[(\eta-C_5H_5)Co(\mu-\eta:\eta-C_4H_4BPh)ML](BF_4)_2$ (LM = $(\eta-C_6Me_6)Ru$ or $(\eta-C_5Me_5)Ir$).^{5,6}

As part of our continuing studies on the synthesis of transition metal triple-decker complexes, 7,8 we examined the stacking reactions of the neutral borole complex $(\eta\text{-}C_5H_5)Co(\eta\text{-}C_4H_4BCy)$ (Cy = $cyclo\text{-}C_6H_{11})$ (1) with the dicationic fragments [LM] $^{2+}$ (LM = $(\eta\text{-}C_6H_6)Ru$, $(\eta\text{-}1,3,5\text{-}C_6H_3Me_3)Ru$, or $(\eta\text{-}C_5Me_5)Rh)$ (Scheme 1).

Results and Discussion

Using these reactions, we prepared new dicationic 30-electron triple-decker complexes $2\mathbf{a}-\mathbf{c}$, which were isolated as tetrafluoroborates. The fragments $[LM]^{2+}$ were generated *in situ* by the reactions of the chloride

Scheme 1

complexes $[LMCl_2]_2$ with $AgBF_4$ in nitromethane. The starting complex 1 was synthesized by the reaction of $[(C_4H_4BCy)Co(CO)_2]_2$ with nickelocene analogously to the synthesis of $(\eta-C_5H_5)Co(\eta-C_4H_4BPh)$. The compound $[(C_4H_4BCy)Co(CO)_2]_2$, in turn, was prepared by the reaction of 1-cyclohexylborol-3-ene 10 with $Co_2(CO)_8$ analogously to the synthesis of $[(C_4H_4BR)Co(CO)_2]_2$ (R = Me or $Ph)^{11}$.

The structures of compounds 1 and 2a–c were confirmed by elemental analysis and the data from 1H and ^{11}B NMR spectroscopy (Table 1). As in the case of the related compounds $[(\eta\text{-}C_5H_5)\text{Co}(\mu\text{-}\eta\text{:}\eta\text{-}C_4H_4BPh)\text{ML}](BF_4)_2$ (LM = $(\eta\text{-}C_6\text{Me}_6)\text{Ru}$ or $(\eta\text{-}C_5\text{Me}_5)\text{Ir})$ described previously,5,6 the signals for the protons of the borole ring in compounds 2a–c are shifted downfield and the signals for the B atoms are shifted upfield compared to those in the spectra of sandwich complex 1.

Compounds **2a**—**c** are bright-colored crystalline substances stable in air both in the solid state and in solutions in MeNO₂ for several hours. In stronger coordinating solvents (Me₂CO, MeCN, *etc.*), these compounds gradually decompose.

Experimental

The reactions were carried out under an atmosphere of argon. All operations associated with isolation of the products were carried out in air. The ¹H and ¹¹B NMR spectra were recorded on a Bruker AMX-400 instrument relative to the residual protons of the solvent (¹H) or BF₃ · Et₂O (the external standard, ¹¹B).

[(η -Benzene)ruthenium]- (2a), [(η -mesitylene)ruthenium]- (2b), and [(η -pentamethylcyclopentadienyl)rhodium](μ - η -B-cyclohexylborole)[(η -cyclopentadienyl)cobalt] bis(tetrafluoroborate) (2c). MeNO₂ (1 mL) was added to a mixture of the complex [LMCl₂]₂ (0.147 mg-equiv.) and AgBF₄ or

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1267—1268, July, 2001.

Table 1. Parameters of the ${}^{1}H$ and ${}^{11}B$ NMR spectra of compounds 1 and 2a-c

Com- Solvent pound		δ	
		¹ H	¹¹ B
1	CDCl ₃	1.05 (m, 1 H, Cy); 1.22 (m, 5 H, Cy); 1.69 (m, 3 H, Cy); 1.83 (m, 2 H, Cy); 3.51 (m, 2 H, α-H, C ₄ H ₄ BCy); 4.82	
2a	(CD ₃) ₂ CO	(s, 5 H, C ₅ H ₅); 4.99 (m, 2 H, β-H, C ₄ H ₄ BCy)	19.8 (s, C ₄ H ₄ BCy); 0.8 (s, BF ₄)
2b	(CD ₃) ₂ CO	(s, 5 H, C ₅ H ₅); 6.56 (m, 2 H, β-H, C ₄ H ₄ BCy); 6.60 (s, 6 H, C ₆ H ₆) 1.24 (m, 1 H, Cy); 1.48 (m, 5 H, Cy); 1.79 (m, 3 H, Cy); 2.23 (m, 2 H, Cy); 2.32 (s,	$C_4H_4BCy);$
2c	(CD ₃) ₂ CO	9 H, C ₆ H ₃ Me ₂); 4.70 (m, 2 H α-H, C ₄ H ₄ BCy); 6.30 (s, 5 H, C ₅ H ₅); 6.41 (s, 3 H, C ₆ H ₃ Me ₃ 6.45 (m, 2 H, β-H, C ₄ H ₄ BCy)	19.0 (s, C ₄ H ₄ BCy); -0.4 (s,
		Cy); 4.92 (m, 2H, α-H, C ₄ H ₄ BCy); 6.25 (s, 5 H, C ₅ H ₅); 6.47 (m, 2 H, β-H, C ₄ H ₄ BCy)	

AgBF $_4$ · 3C $_4$ H $_8$ O $_2$ (0.305 mmol) and the reaction mixture was stirred for ~0.5 h. The precipitate of AgCl that formed was centrifuged off and the resulting solution was added to complex 1 (40 mg, 0.148 mmol). The reaction mixture was stirred for ~2 h and then ether (~10 mL) was added. The bright-colored precipitate was filtered off and reprecipitated with ether from acetone. **Compound 2a**, the yield was 53%, red solid. Found (%): C, 40.59; H, 4.12. C $_{21}$ H $_{26}$ B $_{3}$ CoF $_{8}$ Ru. Calculated (%): C, 40.49; H, 4.21. **Compound 2b**, the yield was 63%, red solid. Calculated

lated (%): C, 42.53; H, 4.82. $C_{24}H_{32}B_3CoF_8Ru$. Found (%): C, 43.35; H, 4.85. **Compound 2c**, the yield was 75%, orange solid. Found (%): C, 43.71; H, 5.27. $C_{25}H_{35}B_3CoF_8Rh$. Calculated (%): C, 44.04; H, 5.17.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 99-03-33106) and by the Federal Target Program "Integration" (Grant AO115).

References

- 1. G. E. Herberich, J. Hengesbach, G. Huttner, A. Frank, and U. Schubert, *J. Organomet. Chem.*, 1983, **246**, 141.
- G. E. Herberich, I. Hausmann, B. Hessner, and M. Negele, J. Organomet. Chem., 1989, 362, 259.
- G. E. Herberich, D. P. J. Köffer, and K. M. Peters, *Chem. Ber.*, 1991, 124, 1947.
- G. E. Herberich, B. Hessner, J. A. K. Howard, D. P. J. Köffer, and R. Saive, *Angew. Chem., Int. Ed. Engl.*, 1986, 25, 165.
- G. E. Herberich, U. Büschges, B. A. Dunne, B. Hessner, N. Klaff, D. P. J. Köffer, and K. M. Peters, *J. Organomet. Chem.*, 1989, 372, 53.
- G. E. Herberich, B. A. Dunne, and B. Hessner, *Angew. Chem.*, *Int. Ed. Engl.*, 1989, 28, 737.
- A. R. Kudinov and M. I. Rybinskaya, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 1636 [*Russ. Chem. Bull.*, 1999, 48, 1615 (Engl. Transl.)].
- 8. A. R. Kudinov, D. A. Loginov, S. N. Ashikhmin, A. A. Fil'chikov, L. S. Shul'pina, and P. V. Petrovskii, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 1647 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1637].
- 9. G. E. Herberich, B. Hessner, and R. Saive, J. Organomet. Chem., 1987, 319, 9.
- G. E. Herberich, W. Boveleth, B. Hessner, M. Hostalek,
 D. P. J. Köffer, H. Ohst, and D. Söhnen, *Chem. Ber.*, 1986,
 119, 420.
- G. E. Herberich, W. Boveleth, B. Hessner, D. P. J. Köffer, M. Negele, and R. Saive, J. Organomet. Chem., 1986, 308, 153.

Received March 28, 2001